MARC Bibliographic Record

LEADER08259nam a22003973i 4500
001 991023398083702122
005 20240607142801.0
006 m o d |
007 cr#cnu||||||||
008 231203s2024 xx o ||||0 eng d
020    $a981-9951-34-8
035    $a(PPN)273593714
035    $a(MiAaPQ)EBC30980213
035    $a(Au-PeEL)EBL30980213
035    $a(CKB)29128037400041
035    $a(EXLCZ)9929128037400041
040    $aMiAaPQ$beng$erda$epn$cMiAaPQ$dMiAaPQ
050 _4 $aHD61
082 0_ $a658.155
100 1_ $aNakamura, Takafumi.
245 10 $aSystem of Human Activity Systems :$bA Novel Way to Visualize Invisible Risks.
250    $a1st ed.
264 _1 $aSingapore :$bSpringer,$c2024.
264 _4 $c©2023.
300    $a1 online resource (164 pages)
336    $atext$btxt$2rdacontent
337    $acomputer$bc$2rdamedia
338    $aonline resource$bcr$2rdacarrier
490 1_ $aTranslational Systems Sciences Series ;$vv.37
505 0_ $aIntro -- Preface -- Acknowledgment -- Abstract -- Contents -- Abbreviations -- Chapter 1: Introduction -- 1.1 Purpose of this Book -- 1.2 Structure of this Book -- Chapter 2: Survey of Current Methodologies -- 2.1 Limitations of Current Structuring Methodologies and Risk Analysis Techniques -- 2.2 Limitations of Current Troubleshooting Techniques -- 2.3 Approaches from Social Systems Science -- 2.4 Approaches from Self-Organization -- 2.5 Epigrams from the Past -- Chapter 3: Proposal of a New Methodology to Overcome Current Methodological Shortcomings -- 3.1 System of System Failures (SOSF) -- 3.1.1 Three Success Factors of Double-Loop Learning and New Methodologies -- 3.1.2 Introduction of System of System Failures (SOSF) -- 3.2 Failure Factors Structuring Methodology -- 3.2.1 Overview of Maintenance Systems -- Maintenance Worldview -- Maintenance System -- Maintenance Objective Systems -- Overview of Managing System Failures -- 3.2.2 FFSM: A New Methodology for Learning from Failures -- Required Characteristics of the Methodology -- FFSM: A New Methodology for Learning from Failures -- Boundary Conditions for FFSM Applicable Areas -- 3.3 System Failure Dynamic Model -- 3.3.1 Understanding System Failures through Dynamic Models -- Various Archetypes Related to Failures of Technical Systems (Archetypes) -- System Failure Archetype: Problem -- System Failure Archetype: Solution -- Complacency Archetype: Side Effects -- Misunderstanding Class 2 or 3 Failure as Class 1 Archetype: Problem -- Misunderstanding Failure Classes 2 and 3 as Failure Class 1 Archetype: Solution -- Erosion of Safety Goals and Incentive to Report Fewer Incidents: Side Effects -- Fix that Fails Archetype: Side Effects -- Double-Loop Learning for Class 2 Failure Archetype: Solution -- Double-Loop Learning for Class 3 Failure Archetype: Solution.
505 8_ $aDouble-Loop Learning for Fix that Fails Archetype: Solution -- Chapter 4: Application to ICT System Failures -- 4.1 Scenarios for Applying SOSF to ICT System Failures -- 4.1.1 SOSF and the Diagnostic Flow of System Failures -- 4.1.2 SO Space Map -- 4.1.3 OP Matrix -- 4.1.4 A New Cycle of Learning to Avoid System Failures -- 4.2 Application of FFSM to Long-Time Down Incidents -- 4.2.1 Phase 1 (Structural Model Analysis: ISM) -- 4.2.2 Discussion of Phase 1 Analysis -- 4.2.3 Phase 2 (Quantification Theory Type III) Analysis -- 4.2.4 Discussion of Phase 2 Analysis -- 4.2.5 Phase 3 (Exploring the System: Become Aware of the Meaning) -- 4.2.6 Discussion of Phase 3 Analysis -- 4.3 Application of SFDM to Server Noise Problems -- 4.3.1 Design Failure or Installation Failure? -- Chapter 5: Discussion of the Application Results -- 5.1 Results of the Application of the FFSM -- 5.2 Results of the Application of SFDM -- Chapter 6: Transformation of SOSF Space into Topological Space to Quantify and Visualize Risk -- 6.1 Background -- 6.1.1 Summary of SOSF and Further Extension -- 6.2 Review of Current Methodologies (Revisit Chap. 2) -- 6.2.1 Features of Existing Structuring Methodologies and Risk Analysis Techniques -- 6.2.2 Issues and Challenges of Current Troubleshooting Methodologies -- 6.3 Overview of Introducing Topology into SOSF Space -- 6.4 Proposed Methodology for Introducing Topology (Risk Quantification/Visualization Methodology) -- 6.4.1 Normal Accident Theory and IC Chart -- 6.4.2 Close-Code Metrics as an Example Taxonomy of System Failures -- 6.4.3 Introduction of the Metric into SOSF Space -- 6.5 Application Examples to ICT Systems -- 6.5.1 Application Example 1: Topological Presentation of SRF for Various ICT Systems -- Two Hypotheses -- IA Server Systems Shift to Linear Interaction and Tight Coupling.
505 8_ $aHealthcare Systems Shift to Complex Interaction and Loose Coupling -- 6.5.2 Application Example 2: Application to ICT Systems Complexly Coupled with Cloud and Network Technologies -- 6.6 Results and Discussion of Application to ICT Systems -- 6.6.1 Results of the Application Example 1 -- 6.6.2 Results of the Application Example 2 -- Chapter 7: Reconsidering SOSF from the Perspective of HAS -- Chapter 8: Viewing Human Error as a HAS (Proposed Framework for Ensuring Holistic Measures and its Application to Human Error) -- 8.1 Background -- 8.1.1 Socio-Technical Systems and Safety -- 8.2 Current Methodologies to Achieve System Safety -- 8.2.1 Risk Management and Crisis Management -- 8.2.2 Static (Safety and 4 M) and Dynamic (Individual and Team) Perspectives -- 8.2.3 Safety Is a Systems Problem -- 8.2.4 Two Major Organizational Theories -- Normal Accident Theory and High-Reliability Organization Theory -- 8.3 Proposal of the Human Error Framework -- 8.3.1 General Perspectives on Crisis -- 8.3.2 Contributions of Human Error (Team Errors and Individual Errors) -- 8.3.3 Hypotheses -- 8.4 Application to ICT Systems -- 8.5 Results and Discussion of Application to ICT Systems -- Chapter 9: Total System Intervention for System Failures and its Application to ICT Systems -- 9.1 Introduction -- 9.2 TSI for SF Methodology as an Application Procedure -- 9.2.1 Simple Linear System Failure model (Domino Metaphor) -- 9.2.2 Complex Linear System Failure model (Swiss Cheese Metaphor) -- 9.2.3 Non-linear or Systemic Model (Unrocking Boat Metaphor) -- 9.3 Application to ICT Systems -- 9.3.1 Misunderstanding Class 2 or 3 Failure as Class 1 Failure (Problem) -- 9.3.2 Erosion of Safety Goals Accompanied by the Incentive to Report Fewer Incidents -- 9.3.3 Fix that Fails Archetype (Side Effect) -- 9.3.4 Double-Loop learning for Class 2 Failure Archetype (Solution).
505 8_ $a9.3.5 Double-Loop learning for Class 3 Failure Archetype (Solution) -- 9.3.6 Double-Loop learning for Fix that Fails Archetype (Solution) -- 9.4 Conclusion -- Chapter 10: Conclusions and Toward Future Research -- 10.1 Conclusions -- 10.2 Toward Future Research -- Appendix A. Taxonomy of System Failures -- Appendix B. Sample Incident Matrix -- Appendix C. Sample Incidents with Attributes -- Afterword -- References -- Name Index -- Subject Index.
588    $aDescription based on publisher supplied metadata and other sources.
776 08 $iPrint version:$aNakamura, Takafumi$tSystem of Human Activity Systems$dSingapore : Springer,c2024$z9789819951338
830 _0 $aTranslational Systems Sciences Series
906    $aBOOK

MMS IDs

Document ID: 9914033031802121
Network Electronic IDs: 9914033031802121
Network Physical IDs:
mms_mad_ids: 991023398083702122