Books

Uncertainty quantification for multiscale kinetic equations and quantum dynamics

Author / Creator
Liu, Liu, author
Available as
Online
Physical
Summary

In the first part of the thesis, we develop a generalized polynomial chaos approach based stochastic Galerkin (gPC-SG) method for the linear semi-conductor Boltzmann equation with random inputs and...

In the first part of the thesis, we develop a generalized polynomial chaos approach based stochastic Galerkin (gPC-SG) method for the linear semi-conductor Boltzmann equation with random inputs and diffusive scalings. The random inputs are due to uncertainties in the collision kernel or initial data. We study the regularity (uniform in the Knudsen number) of the solution in the random space, and prove the spectral accuracy of the gPC-SG method. We then use the asymptotic-preserving framework for the deterministic counterpart to come up with the stochastic asymptotic-preserving (sAP) gPC-SG method for the problem under study which is efficient in the diffusive regime. Numerical experiments are conducted to validate the accuracy and asymptotic properties of the method. In the second part, we study the linear transport equation under diffusive scaling and with random inputs. The method is based on the gPC-SG framework. Several theoretical aspects will be addressed. A uniform numerical stability with respect to the Knudsen number and a uniform error estimate is given. For temporal and spatial discretizations, we apply the implicit-explicit (IMEX) scheme under the micro-macro decomposition framework and the discontinuous Galerkin (DG) method. A rigorous proof of the sAP property is given. Extensive numerical experiments that validate the accuracy and sAP of the method are shown. In the last part, we study a class of highly oscillatory transport equations that arise in semiclassical modeling of non-adiabatic quantum dynamics. These models contain uncertainties, particularly in coefficients that correspond to the potentials of the molecular system. We first focus on a highly oscillatory scalar model with random uncertainty. Our method is built upon the nonlinear geometrical optics (NGO) based method for numerical approximations of deterministic equations, which can obtain accurate pointwise solution even without numerically resolving spatially and temporally the oscillations. With the random uncertainty, we show that such a method has oscillatory higher order derivatives in the random space, thus requires a frequency dependent discretization in the random space. We modify this method by introducing a new "time" variable based on the phase, which is shown to be non-oscillatory in the random space, based on which we develop a gPC-SG method that can capture oscillations with the frequency-independent time step, mesh size as well as the degree of polynomial chaos. A similar approach is then extended to a semiclassical surface hopping model system with a similar numerical conclusion. Various numerical examples attest that these methods indeed capture accurately the solution statistics pointwisely even though none of the numerical parameters resolve the high frequencies of the solution.

Details

Additional Information